Login for faster access to the best deals. Click here if you don't have an account.

Best Ways to Test Transformer Oil Professional

2 years ago Multimedia Bayside   165 views

$ --

  • img
Location: Bayside
Price: $ --

Best Ways to Test Transformer Oil

"What is the best transformer oil testing equipment?"

Several variables must be considered in order to answer this question, including your budget, the volume of samples to be tested and the need for real-time continuous monitoring.

Cost is generally the first consideration. Like most business decisions, a cost/benefit analysis should be conducted to determine whether testing is a valid expense. Sadly, in many cases, once the cost of testing or testing equipment is calculated, the answer typically is, “We can’t afford that now.” The idea often is then put on the back burner where it eventually withers and dies.

However, if you compare the cost of testing or testing equipment to the cost of a replacement transformer, labor to remove and reinstall, and most importantly the cost of downtime, how can you afford not to perform testing?

The next consideration should be whether the volume of samples is sufficient to justify the cost of onsite testing equipment and personnel. In most cases, the sample volume is not enough to warrant this expense. In these cases, a third-party lab must be selected that can perform the following tests for in-service transformer oils: interfacial tension (ASTM D971), acid number (ASTM D664), dielectric breakdown voltage (ASTM D877 or D1816), Karl Fischer water (ASTM D1533), oxidation inhibitor (ASTM D4768 or D2668) and dissolved gas analysis (ASTM D3612).

In addition, the following tests should be conducted upon receipt: liquid power factor (ASTM D924), specific resistance (ASTM D1169), corrosive sulfur (ASTM D1275), gassing tendency (ASTM D2300), oxidation stability (ASTM D2440) and particle count (ASTM D6786).

If the decision is made to perform testing in-house, many of the necessary tests may be outside the standard capabilities of the "lab-in-a-box" equipment currently on the market. This will require purchasing multiple pieces of equipment, which can be several thousands of dollars per piece. Unless the volume of samples is significant, there is no initial cost savings to purchasing onsite equipment. Nevertheless, the benefit of having instant test results allowing for the identification and correction of an impending equipment failure could well justify the cost as indicated above in the form of repair work and downtime.

In regard to real-time condition monitoring, as technology advances and test equipment becomes less expensive, it may be well worth the investment. Several companies now offer monitoring equipment for continuous dissolved gas analysis as well as instruments to measure electrical conductivity, dielectric constant, oil temperature, etc. Many of these have the option of transmitting data to a central location via Wi-Fi, adding the convenience of monitoring a transformer’s condition from the control station. This could potentially reduce or eliminate the need to periodically sample and test the oil, as you would allow the system to monitor the oil and test only when an exception condition was indicated.

Keep in mind that there is no "one-size-fits-all" approach. The best equipment will be whatever provides the most accurate results, is most affordable and, most importantly, will actually be used. When making these decisions, be sure to take into account the cost of the downtime to be incurred if you suffer a catastrophic failure.

What is Flash Point of transformer oil?

At which minimum temperature the transformer oil gives of vapor to ignite in the air is called the flash point of transformer oil. Commonly the flash point of transformer oil/ insulating oil is 140 degree Celsius. Flashpoint is the physical parameter of transformer oil. Flashpoint test of transformer oil indicates the flammability of the substance or the organic compound.

Flashpoint test of transformer oil is a low-cost test and popular test of insulating oil and can use transformer oil flash point tester. The oil sparkles after the mixing of vapor with oxygen in the air. The vapor pressure of oil normally in flash point is 3-5 mm Hg. When a small amount of flame is applied to the oil the mixture of vapor will burn for temporary and then it will get rid of automatically when the point temperature has been reached. If we continue the heating process for a long time or more than the flash point (50-70 degree Celsius) then the oil will be reached at the fire point.

What is a transformer?

Transformers are used to change an AC voltage, for example by stepping it up or stepping it down. They also play an insulating role. In this latter role, they protect the users of electric equipment by isolating the input and output sides of the power supply circuit so that electricity on the input side cannot flow directly to the output side. We can use transformer tester to finish these operations.

Examples that are familiar to most people include the small transformers that people use during overseas travel and the bucket-shaped transformers that you can see mounted on utility poles.
Transformers convert electricity to an easy-to-use voltage based on the necessary load at the facility in question, from high voltage to low voltage. You may be wondering, “Why not just transmit electricity at an easy-to-use voltage in the first place?”
However, transmitting electricity via power lines at low voltages causes substantial transmission losses. Power plants use high voltages to reduce current while transmitting electricity in order to limit transmission losses.